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ABSTRACT

This study proposes a two-stage Cross-Project Defect Prediction (CPDP) framework to address class 
and feature distribution imbalance. It uses adversarial training-enhanced transfer learning to identify 
defective software modules. Its superiority is shown through experiments on public datasets and 
comparison with traditional models. The first stage involves feature extraction with two encoders and 
advanced preprocessing techniques. The second stage utilizes transfer learning, ensemble learning, 
fine-tuning, and the Synthetic Minority Oversampling Technique (SMOTE) method. Future research 
can expand its application and optimize the model to handle complex imbalances or incorporate 
other techniques to enhance predictive performance, increasing the practical potential of the CPDP 
model in software engineering.

Keywords: Adversarial training-GAN, cross-project software, defect patterns, loss function, prediction model, 
transfer learning

INTRODUCTION

In recent years, CPDP models have gained attention as manual testing in large software 
systems is difficult (Saeed & Saleem, 2023). They use machine learning to aid development 
and testing. However, traditional CPDP has low accuracy due to reliance on methods 
requiring identical statistical characteristics (Bala et al., 2022). Researchers have explored 

traditional methods to address class and 
feature imbalance (Wen et al., 2022; Zhao 
et al., 2021). This study presents a CPDP 
model based on adversarial training with 
ensemble learning, training, and fine-tuning. 
Contributions include enhancing transfer 
learning with two encoders, addressing class 
imbalance using SMOTE and _NNfilter, and 
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conducting experiments on public datasets to compare with traditional methods (Khleel & 
Nehéz, 2023; Szeghalmy & Fazekas, 2023).

PROBLEM STATEMENT

When addressing some problem of class imbalance, CPDP models struggle to adapt, 
potentially impacting model generalization performance due to the differences in scale, 
programming languages, and structural complexity among software projects (Govinda et 
al., 2023; Tang et al., 2021; Hu & Zhu, 2023). The first problem with this research is that 
the imbalance in the distribution of defect and non-defect samples affects the performance 
of CPDP models (class imbalance) (Qiao et al., 2020).

Different software projects may have different concerns, resulting in a large difference 
in the distribution of project features (feature distribution imbalance). For example, projects 
in the financial industry prioritize data security, performance and response time, while 
projects in the e-commerce sector focus on interface design and order processing. CPDP 
model performance and generalization ability might be decreased when faced with feature 
distribution imbalance (Hu & Zhu, 2023; Saeed & Saleem, 2023).

RESEARCH QUESTIONS

The purpose of this research is to answer the research questions as follows:
1. How can we classify class imbalance between the source and target projects in 

CPDP models?
2. How can feature distribution imbalance mitigation between the source project and 

the target project be designed in CPDP models?
3. What can the CPDP models help with risk management and decision making?

CONCLUSION

When comparing the experimental results of our research method and traditional machine 
learning models (Logistic Regression, SVM, Decision Tree) for defect prediction on the 
AEEEM dataset (EQ, ML, PDE, LC, JDT), we used the average results of different models 
on the AEEEM dataset. As shown in Table 1, the evaluated metrics include Accuracy, AUC 

Table 1
From the comparative experimental average results

Method Accuracy AUC F1 Score Precision Recall
SVM
Logistic regression
Decision Tree
Research 

0.36
0.35
0.43
0.63

0.37
0.36
0.43
0.61

0.17
0.38
0.48
0.52

0.33
0.32
0.42
0.57

0.32
0.34
0.35
0.50
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The visualization results, shown in 
Figure 1, show that the designed method 
has achieved good results in cross-project 
defect prediction tasks. Specifically, a high 
recall rate indicates that actual defects can be 
effectively identified.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  =  115
115+8

= 0.935 

As shown in Figure 2 the ROC curve is 
closer to the upper left corner and the area 
under the precision-recall curve is larger, it 
indicates to a certain extent that the model has 
better ability to handle class imbalance and 
feature imbalance problems in cross-project 
defect prediction.

Figure 1. Result for EQ target item predicted label            

Figure 2. Result for EQ target item false positive rate and recall

(Area Under the Curve), F1 Score, Precision, and Recall. From the average results, our 
proposed method achieved an Accuracy of 0.63, an AUC of 0.61, an F1 Score of 0.52, a 
Precision of 0.57, and a Recall of 0.50.

From the comparative experimental average results on the AEEEM dataset, it can be 
observed that my proposed method achieves higher predictive accuracy in cross-project 
defect prediction tasks compared to the three traditional methods. 

Receiver Operating Characteristic Precision-Recall Curve
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